
  

Lecture 14:
Finite Automata

CS103CS103

Winter 2025Winter 2025

Part 1 of 3



  

0 – 46 47 – 52 53 – 58 59 – 64 65 – 70 71 – 76 77 – 82

6 4
8

20

45

71

45

Problem Set Three Graded

75th Percentile: 76 / 82 (93%)
50th Percentile: 72 / 82 (88%)
25th Percentile: 65 / 82 (79%)



  

Midterm 1



  

● 80th Percentile:
    48 / 50 (96%)

● 60th Percentile:
    45 / 50 (90%)

● 40th Percentile:
    41 / 50 (82%)

● 20th Percentile:
    34 / 50 (68%)

● This is only 12.5% of your grade.
● We want everyone to be wildly 

successful!
● 1-on-1s (contact Emily)
● Review feedback
● Assess (small scattered point 

losses? one large loss?)

● Assuming comfort going forward:
● Contrapositive
● Negations (implication, quant.)
● Assume/Prove table
● Proofwriting Checklist

Thoughts and Observations
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CoDa Update
● The coffee shop is now 

open! (7 AM – 2 PM)

● Starting March 3 it will be 
open later. (7 AM – 5 PM)

● Feel free to make use of 
the beautiful study spaces 
throughout the building!



  

Outline for Today
● Computability Theory

● What problems can we solve with a 
computer?

● Formal Language Theory
● Stringy thingies.

● Finite Automata
● A very simple model of a computing device.



  

Computability Theory



  

What problems can we solve with a computer?

What kind of 
computer?



  

Two Challenges
● Computers are dramatically better now than 

they’ve ever been, and that trend continues.
● Writing proofs on formal definitions is hard, 

and computers are way more complicated 
than sets, graphs, or functions.

● Key Question: How can we prove what 
computers can and can’t do…
● … so that our results are still true in 20 years?
● … without multi-hundred page proofs?



  

Enter Automata
● An automaton (plural: automata) is a 

mathematical model of a computing device.
● It’s an abstraction of a real computer, the way 

that graphs are abstractions of social networks, 
transportation grids, etc.

● The automata we’ll explore are
● powerful enough to capture huge classes of computing 

devices, yet
● simple enough that we can reason about them in a 

small space.
● They’re also fascinating and useful in their own 

rights. More on that later.



  

Toward a Model of Computation...



  

Why does this 
computer 
“feel” less 
powerful…

…than this 
one?
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Calculators vs. Desktops
● A calculator has a small amount of memory. A 

desktop computer has a large amount of 
memory. 

● A calculator performs a fixed set of functions. A 
desktop is reprogrammable and can run many 
different programs.

●  These two distinctions account for much of the 
difference between “calculator-like” computers and 
“desktop-esque” computers.

● In CS103, we’ll first explore “small-memory” 
computers in detail, then discuss “large-memory” 
computers in depth.



  

Let’s Focus on Computing with Finite 
Memory
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Data stored electronically. 
Algorithm is in silicon.

Memory limited by display.

Data stored in wood.
Algorithm is in brain.

Memory limited by beads.

Our Goal: A Unifying Abstraction



  

How do we model “memory” and
“an algorithm” when they can take

on so many forms?
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What’s in Common?
● These machines receive input 

from an external source.
● That input is provided 

sequentially, one discrete unit 
at a time.

● Each input causes the device to 
change configuration. This 
change, big or small, is where 
the computation happens.

● Once all input is provided, we 
can read off an answer based 
on the configuration of the 
device.



  

Modeling Finite Computation
● We will model a finite-

memory computer as a 
collection of states linked 
by transitions.

● Each state corresponds to 
one possible configuration of 
the device’s memory. This is 
super abstract!

● Each transition indicates 
how memory changes in 
response to inputs.

● Some state is designated as 
the start state. The 
computation begins in that 
state.

q₀ q₁

q₃q₂
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  bb    bb  

   start     



  

Modeling Finite Computation
● This device processes 

strings made of characters.
● Each character represents 

some external input to the 
device.

● The string represents the full 
sequence of inputs to the 
device.

● To run this device, we begin 
in our start state and scan 
the input from left to right.

● Each time the machine sees 
a character, it changes 
state by following the 
transition labeled with that 
character.

a b a b ab

q₀ q₁

q₃q₂

a
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a
 
 
a

  bb    bb  

   start     q₀



  

Modeling Finite Computation
● Once we’ve finished entering 

all the characters of our input, 
we need to obtain the result of 
the computation.

● In general, computers can 
produce all sorts of things as 
the result of a computation: a 
number, a piece of text, etc.

● As a simplifying assumption, 
we’ll assume that we just need 
to get a single bit of output. 
That is, our machines will just 
say YES or NO.

● (This can be generalized – 
come talk to us after class if 
you’re curious how!)

a b a b ab

q₀ q₁

q₃q₂
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Modeling Finite Computation
● Some of the states in our 

computational device will 
be marked as accepting 
states. These are denoted 
with a double ring.

● If the device ends in an 
accepting state after 
seeing all the input, 
accepts the input (says 
YES).

● If the device does not end 
in an accepting state after 
seeing all the input, it 
rejects the input (says NO).

a b a b ab

q₀ q₁

q₃q₂

a
 
 
a

a
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Modeling Finite Computation
● Try it yourself! 

Which of these 
strings does this 
device accept?

aab  

aabb  

abbababba  

q₀ q₁

q₃q₂

a
 
 
a

a
 
 
a

  bb    bb  

q₀

q₃

   start     

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Finite Automata
● This type of computational 

device is called a finite 
automaton (plural: finite 
automata).

● Finite automata model 
computers where (1) 
memory is finite and (2) 
the computation produces 
as YES/NO answer.

● In other words, finite 
automata model 
predicates, and do so with 
a fixed, finite amount of 
memory.

Finite-memory
Computer

input  
YES

NO
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   start     



  

Formalizing Things



  

Strings
● An alphabet is a finite, nonempty set of symbols 

called characters.
● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of 
characters drawn from Σ.

● Example: Let Σ = {a, b}. Here are some strings over Σ:
a    aabaaabbabaaabaaaabbb    abbababba  

● But wait! There are no quotes here!
● The empty string has no characters and is denoted 

ε.



  

Languages
● A language over Σ is a set L consisting of 

strings over Σ.
● Example: The language of palindromes over 

Σ = {a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in 
Σ is denoted Σ*.
● Formally: Σ* = { w | w is a string over Σ }.

● Formally, we say that L is a language over Σ 
when L ⊆ Σ*.

 



  

Mathematical Lookalikes
● We now have ∈, ε, Σ, and Σ*. Yikes!
● The symbol ∈ is the element-of relation.
● The symbol ε is the empty string.
● The symbol Σ denotes an alphabet.
● The expression Σ* means “all strings that can 

be made from characters in Σ.”
● That lets us write things like

● We have ε ∈ Σ*, but ε ∉ Σ.  
● Ever get confused? Just ask!



  

The Cast of Characters
● Languages are sets of strings.
● Strings are finite sequences of characters.
● Characters are individual symbols.
● Alphabets are sets of characters.

Languages

Strings

are sets of            

Characters
are finite sequences of

Alphabets

are nonempty, finite sets of                           



  

Finite Automata and Languages
● Let A be an 

automaton that 
processes strings 
drawn from an 
alphabet Σ.

● The language of A, 
denoted (ℒ A), is the 
set of strings over Σ 
that A accepts:

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
    start     
b
 

b
 

 

a
 

 q₁



  

Finite Automata and Languages

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
    start     
b
 

b
 

 

a
 

 q₁

● Let D be the automaton shown to the 
right. It processes strings over {a, b}.

● Notice that D accepts
all strings of a’s and b’s
that end in a and
rejects everything else.

● So (ℒ D) = { w ∈ {a, b}* | w ends in a }.



  ℒ(A) = { w ∈ Σ* | A accepts w }

q₀   start     
a, b

 q₁
a, b

q₀

q₀   start     a, b

 

q₁
a, b

 

q₂

a, b

This means “take this
transition if you see

an a or a b.”

q₀   start     
       a, bq₀

What are the languages
of these automata? Answer at

https://cs103.stanford.edu/pollev

(I) (II)

(III)

https://cs103.stanford.edu/pollev


  

The Story So Far
● A finite automaton is a collection of states joined by 

transitions.
● Some state is designated as the start state.
● Some number of states are designated as accepting 

states.
● The automaton processes a string by beginning in the 

start state and following the indicated transitions.
● If the automaton ends in an accepting state, it accepts 

the input.
● Otherwise, the automaton rejects the input.
● The language of an automaton is the set of strings it 

accepts.



  

A Small Problem

q0

q1

    0

start

q2 1

0    0 1 1 0



  

Another Small Problem

q0

q2

0, 1start q1

    0

     0, 1

0, 1
0 0 0



  

The Need for Formalism
● In order to reason about the limits of 

what finite automata can and cannot do, 
we need to formally specify their behavior 
in all cases.

● All of the following need to be defined or 
disallowed:
● What happens if there is no transition out of 

a state on some input?
● What happens if there are multiple 

transitions out of a state on some input?



  

DFAs
● A DFA is a

● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton 
that we will see in this course.



  

DFAs
● A DFA is defined relative to some 

alphabet Σ.
● For each state in the DFA, there must be 

exactly one transition defined for each 
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.



  

Is this a DFA over {0, 1}?

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2



  

Is this a DFA over {0, 1}?

q0

q2

0

start

q4

    0

0

q1

q3

1

1    

1

0

1

   0                    1  



  

Is this a DFA over {0, 1}?

q0

q1

    0

start

q2 1

0    



  

Is this a DFA over {0, 1}?

q0 q1
0, 1start

q3

         0, 10, 1        

q2
0, 1



  

Is this a DFA over {0, 1}?

q0

q2

0, 1start q1

    0

     0, 1

0, 1



  

Designing DFAs
● At each point in its execution, the DFA 

can only remember what state it is in.
● DFA Design Tip: Build each state to 

correspond to some piece of information 
you need to remember.
● Each state acts as a “memento” of what 

you're supposed to do next.
● Only finitely many different states means 

only finitely many different things the 
machine can remember.



  

Recognizing Languages with DFAs
L = { w ∈ {a, b}*| the number of b's in w is congruent

         to two modulo three }

q0
start q1 q2

b b

a a a

b

Each state remembers 
the remainder of the 
number of bs seen so 
far modulo three.



  

Recognizing Languages with DFAs
L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a
 

a
 

b
 

 

b

          Σ  



  

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment  }

Let’s have the a symbol be a placeholder for “some character that 
isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help 
you check your work:

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa



  

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment  }

q1
start q2

* q3

*

q4
/q0

/

q5

     a, /      *
a

a, *

/, a

Σ  

Σ



  

Next Time
● Regular Languages

● An important class of languages.
● Nondeterministic Computation

● Why must computation be linear?
● NFAs

● Automata with Magic Superpowers.
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